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COMMENT 

Metastability in the ( i + i ) ~  Ising model: a primitive 
droplet model calculation 

C K Harris? 
Department of Physics, University of Edinburgh, King's Buildings, Mayfield Road, 
Edinburgh E H 9  3JZ, UK 

Received 23 January 1984 

Abstract. Using a primitive droplet model in conjugation with recent exact results for the 
surface free energies of Ising droplets on a square lattice with anisotropic couplings, we 
obtain an expression for the principal non-universal amplitude appearing in the imaginary 
part of the small field metastable state energy of the Hamiltonian field theory version of 
the Ising model in ( 1  + 1 ) ~ .  The calculation is in very good numerical agreement with the 
results of a recent finite lattice study. 

The question of whether the free energy f(H) of an Ising system is singular along the 
phase coexistence line H = 0, T < T,, and the nature of this possible singularity, is an 
old one which has been of considerable interest. It is now widely believed that the 
analytic continuation of f(H) from real positive H into the complex H plane exhibits 
a branch point singularity at H = 0, such that for small 1HI (Langer 1967, Gunther et 
a1 1980), 

Re f(e'"lH1) = Ref(e-'"IHI), ( l a )  
Im f(e""lH1) = 7 BJHlb  exp{-AIHI-"[l + 0 ( H 2 ) ] } ,  (1b) 

A, B are non-universal constants, while a, b are believed universal, with values 

a = d - 1 ,  b=4(3  - d)d, l < d < 5  d z 3  

b=-' 39 d = 3 .  

The singularity structure (1) can be used to obtain high-order estimates for the 
expansion of f(H) and its derivatives in powers of H (Gunther er a1 1980). Such 
expansions, of the magnetisation, were derived from earlier activity series at various 
temperatures below T, and for several lattices in two and three dimensions by Baker 
and Kim (1980). Although the expansions obtained for the 3~ lattices were too short 
for their high-order behaviour to be ascertained, Baker and Kim were able to obtain 
the asymptotic form of the coefficients for the square and triangular lattices and deduce 
that f(H) is singular at H = 0. A subsequent analysis of Baker and Kim's published 
coefficients for the square lattice (Lowe and Wallace 1980) showed that their asymptotic 
behaviour was in good agreement with that expected from the singularity structure (1). 

Rather precise estimates of the constants A and B can be extracted from the square 
lattice series results but these quantities are non-universal and are, therefore, not 
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predicted by the field theoretic treatment which leads to (1). However, a classical 
lattice droplet theory leads to a singularity structure for f( H )  of the form (1) (Langer 
1967) with an expression for A in terms of the surface free energy of an equilibrium 
Ising droplet. This result for A is expected to be correct at low temperatures where 
the non-interacting cluster picture on which the classical droplet theory is based is 
valid, though the theory predicts incorrect values for B and b owing to the neglect of 
droplet wobble fluctuations (which are included in the field theoretic approach). Using 
recent exact work on the surface free energies of square lattice Ising droplets numerical 
values of A were calculated for comparison with the series estimates by the present 
author (Harris 1984-hereafter referred to as I). A simple modification of the classical 
droplet theory, incorporating the effect of droplet nesting, was employed. The results 
were in excellent agreement with the series estimates, even for T near T,, thus 
furnishing strong support for the droplet theory of phase coexistence. 

The purpose of this comment is to present the extension of the droplet theory of 
I to the case of anisotropic couplings, and hence, after appropriate limits have been 
taken, to the Hamiltonian field theory version of the Ising model in (1 + 1 ) ~ .  A direct 
numerical comparison with the results of a recent finite lattice study of the latter system 
(Hamer 1983) is then made. Our starting point is a square lattice king model with a 
reduced field H and couplings K 1  and K 2  in the x and y directions respectively. 
Defining the following quantities 

p-' = K~ e2K) h = H / K 2  (2) 

and taking the limit K 1  + 03, K 2 ,  H + 0 with p, h remaining finite and arbitrary it can 
be shown that the 2~ Ising problem is equivalent to the following I D  quantum 
mechanical problem (Fradkin and Susskind 1978) 

X =  constant -C [a3( n)a3(  n + 1) + pul( n )  + h u 3 ( n ) ] .  (3) 

The equilibrium state and free energy in the statistical system correspond respectively 
to the ground state and ground state energy in the quantum system. The system 
described by the Hamiltonian (3) has a unique ground state for p greater than the 
critical coupling of unity and a pair of degenerate ground states for h = 0, p < 1. For 
h > 0 (say), the unique ground state becomes metastable on reversing the sign of h. 
Assuming ( l ) ,  it follows that the imaginary part of this metastable state energy be of 
the following form for small Ihl: 

ImE(he"'")=rBlhJexp-A/Ihl  

with 

A = A / K 2 ,  B = BK2.  (4) 

In the work of Hamer (1983), metastable state energies were computed for complex 
values of h on finite lattices and extrapolated to the infinite system. The results were 
consistent with a singularity of the form (4) and numerical values of A and B at various 
subcritical couplings were obtained. We shall proceed to calculate an expression for 
A using the droplet theory of I. This yields the following expression for A in two 
dimensions (equation 7(a) of I) 

A = ( /3Z)2 /8M,  ( 5 )  
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M is the magnetisation while Z is the surface free energy of an equilibrium Ising 
droplet of unit volume. Z is given by 

= 2 w’/2 (6) 

where W is the area of the Wulff plot, whose equation for the square lattice with 
anisotropic couplings is 

hi cosh PX + h2 cosh P y  = 1 

with 

h, = tanh(2Kz)/cosh(2K1) h2 = tanh(2Kl)/cosh(2Kz). ( 7 )  
Equations (6) and (7) have been taken from Zia and Avron (1982). The magnetisation 
M is given by (Chang 1952) 

M = [l -cosech2(2Kl) c o ~ e c h ~ ( 2 K ~ ) ] ” ~ .  (8) 
Taking the limits K1 +a, K Z + O ,  using (2)’ (4), (5)-(8) and writing W as an integral 
over x (and making the substitution U = sinh(px/2)) we finally obtain 

with 

a 2 = 4 p / ( 1  - p ) ’ .  (9) 
Values of A computed from (9) are compared with Hamer’s (1983) estimates in figure 
1. The agreement is very good and, therefore, in strong support of the droplet picture 
which leads to the form (4). Finally we remark that expression (9) exhibits the expected 
divergence of A as p + 0 and vanishing at criticality, i.e. 

A - -4 In p, P+O 

-T(1-p)15/a, p+1.  

2 .  f 
X 

I I  

J f r 
0 0 2  0 4  0 6  08 10 

P 

Figure 1. A (see equation (4)) against coupling p. Comparison of present theory (crosses) 
with numerical work (Hamer 1983, error bars). 
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